
To appear in IEEE Trans. Inform. Theory.

Quantization Index Modulation: A Class of Provably Good

Methods for Digital Watermarking and Information Embedding

Brian Chen and Gregory W. Wornell

Submitted June 1999
Revised September 2000

Abstract

We consider the problem of embedding one signal (e.g., a digital watermark), within another
“host” signal to form a third, “composite” signal. The embedding is designed to achieve efficient
trade-offs among the three conflicting goals of maximizing information-embedding rate, mini-
mizing distortion between the host signal and composite signal, and maximizing the robustness
of the embedding.

We introduce new classes of embedding methods, termed quantization index modulation
(QIM) and distortion-compensated QIM (DC-QIM), and develop convenient realizations in the
form of what we refer to as dither modulation. Using deterministic models to evaluate digital
watermarking methods, we show that QIM is “provably good” against arbitrary bounded and
fully-informed attacks, which arise in several copyright applications, and in particular it achieves
provably better rate-distortion-robustness trade-offs than currently popular spread-spectrum
and low-bit(s) modulation methods. Furthermore, we show that for some important classes of
probabilistic models, DC-QIM is optimal (capacity-achieving) and regular QIM is near-optimal.
These include both additive white Gaussian noise channels, which may be good models for hybrid
transmission applications such as digital audio broadcasting, and mean-square-error constrained
attack channels that model private-key watermarking applications.

Index Terms—dither modulation, quantization index modulation, information embedding, dig-
ital watermarking, steganography, data hiding, digital audio broadcasting, hybrid transmission

1 Introduction

A number of applications have emerged recently [1] that require the design of systems for embedding

one signal, sometimes called an “embedded signal” or “watermark”, within another signal, called a

“host signal”. The embedding must be done such that the embedded signal is “hidden,” i.e., causes

no serious degradation to its host. At the same time, the embedding must be robust to common
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degradations of the watermarked signal—the watermark must survive whenever the host signal

does. In some applications these degradations are the result of benign processing and transmission;

in other cases they result from deliberate attacks.

Several of these applications relate to copyright notification and enforcement for audio, video,

and images that are distributed in digital formats. In these cases the embedded signal either notifies

a recipient of any copyright or licensing restrictions or inhibits or deters unauthorized copying. For

example, this embedded signal could be a digital “fingerprint” that uniquely identifies the original

purchaser of the copyrighted work. If illicit copies of the work were made, all copies would carry

this fingerprint, thus identifying the owner of the copy from which all illicit copies were made. In

another example, the embedded signal could either enable or disable copying by some duplication

device that checks the embedded signal before proceeding with duplication. Such a system has

been proposed for allowing a copy-once feature in digital video disc recorders [2]. Alternatively, a

standards-compliant player could check the watermark before deciding whether or not to play the

disc [3].

Other applications include automated monitoring of airplay of advertisements on commercial

radio broadcasts. Advertisers can embed a digital watermark within their ads and count the num-

ber of times the watermark occurs during a given broadcast period, thus ensuring that their ads are

played as often as promised. In other applications, the embedded signal may be used for authentica-

tion of—or detection of tampering with—the host signal. For example, a digital signature could be

embedded in a military map. A number of other national security applications are described in [4]

and include covert communication, sometimes called “steganography” or low probability of detec-

tion communication, and so-called traitor tracing, a version of the digital fingerprinting application

described above used for tracing the source of leaked information.

One final application for which the digital watermarking methods developed in this paper are

well-suited is the backwards-compatible upgrading of an existing communication system, an ex-

ample of which is so-called hybrid in-band on-channel digital audio broadcasting [5, 6]. In this

application one would like to simultaneously transmit a digital signal with existing analog (AM

and/or FM) commercial broadcast radio without interfering with conventional analog reception.

Thus, the analog signal is the host signal and the digital signal is the watermark. Since the em-

bedding does not degrade the host signal too much, conventional analog receivers can demodulate

the analog host signal. In addition, next-generation digital receivers can decode the digital signal

embedded within the analog signal, which may be all or part of a digital audio signal, an enhance-

ment signal used to refine the analog signal, or simply supplemental information such as station
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identification or traffic information. More generally, the host signal in these hybrid transmission

systems could be some other type of analog signal such as video [7], or even a digital waveform—for

example, a digital pager signal could be embedded within a digital cellular telephone signal.

In general, designers of information embedding systems for these kinds of applications seek to

achieve high embedding rates with high levels of robustness and low levels of embedding-induced

distortion. However, in general these three goals are conflicting. Thus, in this paper we characterize

methods in terms of the efficiency with which they trade off rate, distortion, and robustness.

For instance, for any minimum embedding rate requirement and maximum acceptable level of

embedding distortion, the more efficient an embedding method is, the higher the robustness that

can be achieved.

A great many information-embedding algorithms have been proposed [1] in this still emerging

field. Some of the earliest proposed methods [8, 9, 7] employ a quantize-and-replace strategy: after

first quantizing the host signal, these systems change the quantization value to embed information.

A simple example of such a system is so-called low-bit(s) modulation (LBM), where the least

significant bit(s) in the quantization of the host signal are replaced by a binary representation

of the embedded signal. More recently, additive spread-spectrum based methods, which embed

information by linearly combining the host signal with a small pseudo-noise signal that is modulated

by the embedded signal, have received considerable attention in the literature as an alternative to

LBM-type methods [10, 11, 12, 13].

In this paper we show that both LBM-type strategies and additive spread-spectrum are in

general not good choices for most information embedding and digital watermarking applications.

As an alternative, this paper introduces a new class of information embedding strategies we refer

to as “quantization index modulation (QIM)” that is in general preferable and in many specific

scenarios optimal. We further develop computationally efficient implementations of QIM in the

form of what we refer to as “dither modulation.” We evaluate both specific realizations of uncoded

and coded QIM, and the asymptotic performance limits of coded QIM using information-theoretic

analysis. Other emerging information theoretic results on the digital watermarking problem are

developed in, e.g., [14, 15, 16, 17, 18, 19, 20].

The specific organization of the paper is as follows. In Sec. 2 we develop two useful equivalent

models for the information-embedding problem. In Sec. 3, we classify traditional approaches to this

problem, and in the process identify some of their shortcomings. Sec. 4 introduces the QIM class of

embedding methods, and Sec. 5 develops practical realizations that are compared to corresponding

implementations of traditional approaches. Next, Sec. 6 establishes conditions under which different
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Figure 1: General information-embedding problem model. A message m is embedded in the host
signal vector x using some embedding function s(x, m). A perturbation vector n corrupts the
composite signal s. The decoder extracts an estimate m̂ of m from the noisy channel output y.

forms of QIM are optimal in an information theoretic sense. We then evaluate the methods of this

paper in the context of Gaussian models for unintentional attacks in Sec. 7, and in the context of

some general intentional attack models in Sec 8. Finally, Sec. 9 contains some concluding remarks.

2 Problem Model

Two mathematically equivalent models for the information embedding problem are useful in our

development.

2.1 Distortion-Constrained Multiplexing Model

The information-embedding problem is naturally and generally described by Fig. 1. In this figure,

there is a host signal vector x ∈ RN into which we wish to embed some information m.1 We wish to

embed at a rate of Rm bits per dimension (host signal sample) so we can think of m as an integer

in the set
{
1, 2, . . . , 2NRm

}
.

An embedding function maps the host signal x and embedded information m to a composite

signal s ∈ RN subject to some distortion constraint. Various distortion measures may be of interest,

an example of which is the squared-error distortion

D(s, x) =
1
N
‖s− x‖2. (1)

The composite signal s is subjected to various common signal processing manipulations such as

lossy compression, addition of random noise, and resampling, as well as deliberate attempts to

remove the embedded information. These manipulations occur in some channel, which produces an

1The vector x is any convenient representation of all or part of the host signal. In the case of a host image, it
could be a vector of pixel values or Discrete Cosine Transform (DCT) coefficients, for example. In the case of a host
audio waveform, this vector could be a vector of samples, spectral parameters, or linear prediction coding (LPC)
coefficients, for example.
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Figure 2: Equivalent super-channel model for information embedding. The composite signal is the
sum of the host signal, which is the state of the super-channel, and a host-dependent distortion
signal.

output signal y ∈ RN . For future convenience, we define a perturbation vector to be the difference

n ∈ RN , as shown in Fig. 1; we consider cases of both signal-independent and signal-dependent,

perturbation vectors in this paper.

A decoder extracts—i.e., forms an estimate m̂ of—the embedded information m based on the

channel output y. We focus primarily on the “host-blind” case of interest in most applications,

where x is not available to the decoder, in contrast to the “known-host” case, where the decoder can

separately observe x. (See, e.g., [14] [17] for information-theoretic treatments of some aspects of the

known-host case.) Our interest is in decoders that produce reliable estimates whenever the channel

is not too severe, where reliable means either that m̂ = m deterministically or that Pr[m̂ 6= m] < ε

for sufficiently small ε. In such cases, the tolerable severity of the channel degradations is a measure

of the robustness of an information embedding system.

2.2 Equivalent Super-channel Model

An alternative representation of the model of Fig. 1 is shown in Fig. 2. The two models are

equivalent since any embedding function s(x, m) can be written as the sum of the host signal x

and a host-dependent distortion signal e(x, m), i.e., s(x, m) = x + e(x, m), simply by defining the

distortion signal to be e(x, m) ∆= s(x, m)− x. Thus, one can view e as the input to a super-channel

that consists of the cascade of an adder and the true channel. The host signal x is a state of

this super-channel that is known at the encoder. The measure of distortion D(s, x) between the

composite and host signals maps onto a host-dependent measure of the size P (e, x) = D(x + e, x)
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of the distortion signal e. For example, squared error distortion (1) equals the power of e,

1
N
‖s− x‖2 =

1
N
‖e‖2.

Therefore, one can view information embedding problems as power-limited communication over a

super-channel with a state that is known at the encoder.2 As we will develop, this view will be

convenient for determining achievable rate-distortion-robustness trade-offs of various information

embedding and decoding methods.

2.3 Channel Models

In general, the channel model is either a characterization of the degradations that can actually occur

to the composite signal, or alternatively, a description of the class of degradations to which the

embedder and decoder must be robust, i.e., the system is designed to work against all degradations

described by this particular model. The latter viewpoint is particularly useful in the context of

intentional attacks.

We consider both probabilistic and deterministic channel models. In the probabilistic case, we

specify the channel input-output relationship in terms of the conditional probability law py|s(y|s).
Implicitly, this specification also describes the conditional probability law of the perturbation vec-

tors against which the system must be robust since pn|s(n|s) = py|s(s + n|s). In the deterministic

case, the channel input-output relationship is described most generally in terms of the set of pos-

sible outputs P{y|s} for every given input, or equivalently, in terms of the set of desired tolerable

perturbation vectors P{n|s} for every given input.

3 Classes of Embedding Methods

An extremely large number of embedding methods have been proposed in the literature [22, 23, 1].

Broadly, for our purposes these can be divided into two classes: (1) host-interference non-rejecting

methods and (2) host-interference rejecting methods.

Host-interference non-rejecting methods have the general property that the host signal is effec-

tively a source of interference in the system, and generally result from system designs that do not

allow the encoder in Fig. 2 to sufficiently exploit knowledge of the host signal x.

2Cox, et al., have also recognized that one may view watermarking as communications with side information
known at the encoder [21].
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The simplest of such methods have purely additive embedding functions of the form

s(x, m) = x + w(m), (2)

where w(m) is typically a pseudo-noise sequence. Such embedding methods are often referred to

as additive spread-spectrum methods, and some of the earliest examples are described in [24, 25,

10, 26, 11, 12]. Typically, w(m) takes the form

w(m) = a(m)v (3)

where v is a unit-energy spreading vector and a(m) is a scalar function of the message.3

It is often convenient to view additive spread-spectrum as perturbation of a projection. In

particular, substituting (3) into (2) and using that v has unit energy, we obtain

s = x + a(m)v, (4)

which when projected onto v we obtain

s̃ = sTv = x̃ + a(m) (5)

where x̃ is the corresponding projection of the host signal, i.e.,

x̃ = xTv. (6)

Finally, substituting (5) back into (4) yields the composite signal reconstruction from projections

s = x + (s̃ − x̃)v. (7)

From (2), we see that for this class of embedding methods, the host signal x acts as additive

interference that inhibits the decoder’s ability to estimate m. Consequently, even in the absence

of any channel perturbations (n = 0), one can usually embed only a small amount of information.

Thus, these methods are useful primarily when either the host signal is available at the decoder

3Technically, spread-spectrum systems (2) for which (3) applies are classified as amplitude-modulation additive
spread-spectrum methods, but since there is no risk of confusion in this paper we will use the term “additive spread-
spectrum” to specifically mean those systems based on amplitude-modulation.
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(as assumed in, e.g., [26]) or when the host signal interference is much smaller than the channel

interference.

Information embedding systems can achieve host-interference rejection when knowledge of the

host signal at the encoder is adequately exploited in system design. Examples include LBM and,

more generally, quantize-and-replace systems. In LBM systems, the least significant bit(s) in the

binary representation of a host sample are simply replaced with message bits. A class of quantize-

and-replace systems that we refer to as generalized LBM systems implement a vector generalization

of this embedding strategy. Generalized LBM embedding functions are of the form

s = q(x) + d(m), (8)

where q(·) represents the coarse quantizer that determines the most significant bits, and d is

determined only by the (modulated) least significant bits. A defining characteristic of generalized

LBM systems is that the embedding never alters the most significant bits of the host signal, which

is expressed in terms of the constraint

q(s) = q(x). (9)

Without loss of generality, we may assume that good generalized LBM quantizers are unbiased,

i.e.,

E[q(x)− x] = 0. (10)

One example of a generalized LBM system is that developed in [7], where LBM is effectively

applied to a pseudorandom projection of the form (6). Thus, the embedding is of the form (7)

where s̃ is now of the form

s̃ = sTv = q(x̃) + d(m), (11)

with q(·) a uniform, scalar quantization function of step size ∆ and d(m) a perturbation value. It

is convenient to think of this class of generalized LBM systems as “spread LBM” systems.

While generalized LBM systems are host-interference rejecting, they are unnecessarily con-

strained in a way that makes them generally inefficient and vulnerable to various classes of attacks,

which in turn limits the range of applications for which they can be used. Avoiding these con-

straints in the process of developing optimal information embedding systems naturally gives rise to

a new and general class of host-interference rejecting embedding methods called quantization index

modulation (QIM), which we develop in the sequel.
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4 Quantization Index Modulation

To develop the quantization index modulation concept, we begin by viewing the embedding function

s(x, m) as an ensemble of functions of x, indexed by m. We denote the functions in this ensemble

as s(x; m) to emphasize this view. If the embedding-induced distortion is to be small, then each

function in the ensemble must be close to an identity function in some sense so that

s(x; m) ≈ x, ∀m. (12)

That the system needs to be robust to perturbations suggests that the points in the range of

one function in the ensemble should be far away in some sense from the points in the range of any

other function. For example, one might desire at the very least that the ranges be non-intersecting.

Otherwise, even in the absence of any perturbations, there will be some values of s from which one

will not be able to uniquely determine m. In fact, it is precisely the non-intersection property that

leads to host-signal interference rejection.

The non-intersection property along with the approximate-identity property (12), which sug-

gests that the ranges of each of the functions “cover” the space of possible (or at least highly

probable) host signal values x, suggests that the functions be discontinuous. Quantizers are just

such a class of discontinuous, approximate-identity functions. Then, “quantization index modula-

tion (QIM)” refers to embedding information by first modulating an index or sequence of indices

with the embedded information and then quantizing the host signal with the associated quantizer

or sequence of quantizers.

Fig. 3 illustrates this QIM information-embedding technique. In this example, one bit is to be

embedded so that m ∈ {1, 2}. Thus, we require two quantizers, and their corresponding sets of

reconstruction points in RN are represented in Fig. 3 with ×’s and ◦’s. If m = 1, the host signal is

quantized with the ×-quantizer, i.e., s is chosen to be the × closest to x. If m = 2, x is quantized

with the ◦-quantizer.

As x varies, the composite signal value s varies from one × point (m = 1) to another or from one

◦ point (m = 2) to another, but it never varies between a × point and a ◦ point. Thus, even with

an infinite energy host signal, one can determine m if channel perturbations are not too severe. The

× points and ◦ points are both quantizer reconstruction points and signal constellation points,4

and we may view design of QIM systems as the simultaneous design of an ensemble of source codes

4One set of points, rather than one individual point, exists for each value of m.
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Figure 3: Quantization index modulation for information embedding. The points marked with ×’s
and ◦’s belong to two different quantizers, each with its associated index. The minimum distance
dmin measures the robustness to perturbations, and the sizes of the quantization cells, one of which
is shown in the figure, determine the distortion. If m = 1, the host signal is quantized to the nearest
×. If m = 2, the host signal is quantized to the nearest ◦.

(quantizers) and channel codes (signal constellations).

Conveniently, properties of the quantizer ensemble can be related directly to the performance

parameters of rate, distortion, and robustness. For example, the number of quantizers in the ensem-

ble determines the information-embedding rate Rm. The sizes and shapes of the quantization cells

determine the embedding-induced distortion, all of which arises from quantization error. Finally,

for many classes of channels, the minimum distance

dmin
∆= min

(i,j):i6=j
min

(xi,xj)
‖s(xi; i)− s(xj ; j)‖ (13)

between the sets of reconstruction points of different quantizers in the ensemble effectively deter-

mines the robustness of the embedding.5

It is important to emphasize that, in contrast to the case where the host signal x is known at

the receiver, the minimum distance decoder needs to choose from all reconstruction points of the

5When the host signal is known at the decoder, as is the case in some applications of interest, then the more
natural minimum distance is

dmin(x)
∆
= min

(i,j):i6=j
‖s(x; i)− s(x; j)‖, or dmin

∆
= min

x
min

(i;j):i6=j
‖s(x; i)− s(x; j)‖.
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quantizers, not just those corresponding to the actual host signal x. In particular, the minimum

distance decoder makes decisions according to the rule6

m̂(y) = arg min
m

min
x
‖y − s(x; m)‖. (14)

If, which is often the case, the quantizers s(x; m) map x to the nearest reconstruction point, then

(14) can be rewritten as

m̂(y) = arg min
m

‖y − s(y; m)‖. (15)

(While the minimum distance decoder is especially convenient to implement and analyze, a variety

of other potentially useful decoders are discussed in [27].)

Intuitively, the minimum distance measures the size of perturbation vectors that can be tolerated

by the system. For example, if channel perturbations are bounded according to7

‖y − s‖2 = ‖n‖2 ≤ Nσ2
n. (16)

then the minimum distance decoder is guaranteed to not make an error as long as

d2
min

4Nσ2
n

> 1. (17)

In the case of a classical additive white Gaussian noise channel with a noise variance of σ2
n, at high

signal-to-noise ratio (SNR) the minimum distance also characterizes the error probability of the

minimum distance decoder [28],

Pr[m̂ 6= m] ∼ Q




√
d2

min

4σ2
n


 ,

where Q(·) is the Gaussian Q-function,

Q(x) =
1√
2π

∫ ∞

x
e−t2/2 dt. (18)

6Alternatively, if the host signal x is known at the decoder,

m̂(y,x) = arg min
m

‖y − s(x; m)‖.

7We refer to this as the bounded perturbation channel and will revisit this deterministic channel in Sec. 8.2.1.
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4.1 Distortion-Compensated QIM

Distortion compensation is a type of post-quantization processing that can improve the achievable

rate-distortion-robustness trade-offs of QIM methods. To see this, we begin by noting that for a

fixed rate and a given quantizer ensemble, scaling8 all quantizers by α ≤ 1 increases d2
min by a factor

of 1/α2, thereby increasing the robustness of the embedding. However, the embedding-induced

distortion also increases by a factor of 1/α2. Adding back a fraction 1−α of the quantization error

to the quantization value removes, or compensates for, this additional distortion. The resulting

embedding function is

s(x, m) = q(x; m, ∆/α) + (1− α)[x− q(x; m, ∆/α)], (19)

where q(x; m, ∆/α) is the mth quantizer of an ensemble whose reconstruction points have been

scaled by α so that two reconstruction points separated by a distance ∆ before scaling are separated

by a distance ∆/α after scaling. The first term in (19) represents normal QIM embedding. We

refer to the second term as the distortion-compensation term.

The quantization error added back is a source of interference to the decoder. Typically, the

probability density functions of the quantization error for all quantizers in the QIM ensemble are

similar. Therefore, the distortion compensation term in (19) is effectively statistically independent

of m and can be treated as independent noise. Thus, decreasing α leads to greater minimum

distance, but for a fixed embedding-induced distortion, the distortion-compensation interference at

the decoder increases. One optimality criterion for choosing α is to maximize the following “SNR”

at the decision device:

SNR(α) =
d2
1/α2

(1− α)2 Ds
α2 + σ2

n

=
d2

1

(1− α)2Ds + α2σ2
n

,

where this SNR is defined as the ratio between the squared minimum distance between quantizers

and the total interference energy from both distortion-compensation interference and channel in-

terference. Here, d1 is the minimum distance when α = 1 and is a characteristic of the particular

quantizer ensemble. One can easily verify that the optimal scaling parameter α that maximizes

this SNR is

αopt =
DNR

DNR + 1
, (20)

8If a reconstruction point is at q, it is “scaled” by α by moving it to q/α.
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where DNR is the (embedding-induced) distortion-to-noise ratio Ds/σ2
n.

As we will see, suitably coded versions of this distortion-compensated QIM with precisely the

parameter setting (20) also have important asymptotic optimality properties. Before developing

these properties, let us first investigate some constraints that are useful to impose on QIM systems

to facilitate implementation.

5 Dither Modulation: An Implementation of QIM

A key aspect of the design of QIM systems involves the choice of practical quantizer ensembles for

such systems, which we now explore. In the process, we obtain additional insights into the design,

performance evaluation, and implementation of QIM embedding methods, particularly those of

low-complexity. A convenient structure to consider is that of so-called dithered quantizers [29, 30],

which have the property that the quantization cells and reconstruction points of any given quantizer

in the ensemble are shifted versions of the quantization cells and reconstruction points of any

other quantizer in the ensemble. In non-watermarking contexts, the shifts typically correspond to

pseudorandom vectors called dither vectors. For information-embedding purposes, the dither vector

can be modulated with the embedded signal, i.e., each possible embedded signal maps uniquely onto

a different dither vector d(m). The host signal is quantized with the resulting dithered quantizer to

form the composite signal. Specifically, we start with some base quantizer q(·), and the embedding

function is

s(x; m) = q(x + d(m))− d(m).

We call this type of information embedding “dither modulation”. We discuss several low-complexity

realizations of such dither modulation methods in the sequel.

5.1 Coded Binary Dither Modulation with Uniform Scalar Quantization

Coded binary dither modulation with uniform, scalar quantization is one such realization.9 We

assume that 1/N ≤ Rm ≤ 1. The dither vectors in a coded binary dither modulation system are

constructed as follows:

i) The NRm information bits {b1, b2, . . . , bNRm} representing the embedded message m are error

correction coded using a rate-ku/kc code to obtain a coded bit sequence
{
z1, z2, . . . , zN/L

}
,

9By scalar quantization, we mean that the high dimensional base quantizer q(·) is the Cartesian product of scalar
quantizers.
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where

L =
1

Rm
(ku/kc). (21)

(In the uncoded case, zi = bi and ku/kc = 1.) We divide the host signal x into N/L non-

overlapping blocks of length L and embed the ith coded bit zi in the ith block, as described

below.

ii) Two length-L dither sequences d[k, 0] and d[k, 1] and one length-L sequence of uniform, scalar

quantizers with step sizes ∆1, . . . ,∆L are constructed with the constraint

d[k, 1] =


 d[k, 0] + ∆k/2, d[k, 0] < 0

d[k, 0]−∆k/2, d[k, 0] ≥ 0
, k = 1, . . . , L,

This constraint ensures that the two corresponding L-dimensional dithered quantizers are

the maximum possible distance from each other. For example, a pseudorandom sequence

of ±∆k/4 and its negative satisfy this constraint. One could alternatively choose d[k, 0]

pseudorandomly with a uniform distribution over [−∆k/2, ∆k/2].10 Also, the two dither

sequences need not be the same for each length-L block.

iii) The ith block of x is quantized with the dithered quantizer using the dither sequence d[k, zi].

A detailed assessment of the complexity of this QIM realization is developed in [15, 27].

The minimum distance properties of coded binary dither modulation are readily deduced. In

particular, any two distinct coded bit sequences differ in at least dH places, where dH is the minimum

Hamming distance of the error correction code. For each of these dH blocks, the reconstruction

points of the corresponding quantizers are shifted relative to each other by ±∆k/2 in the kth

dimension. Thus, the square of the minimum distance (13) over all N dimensions is

d2
min = dH

L∑
k=1

(
∆k

2

)2

=
(

dH
ku

kc

)
1

4LRm

∑
k

∆2
k

= γc
1

4LRm

∑
k

∆2
k, (22)

10A uniform distribution for the dither sequence implies that the quantization error is statistically independent of
the host signal and leads to fewer “false contours”, both of which are generally desirable properties from a perceptual
viewpoint [29].
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where to obtain the second equality we have used (21), and where in the third line γc is the gain

of the error correction code,

γc
∆= dH(ku/kc). (23)

In the high signal-to-distortion ratio (SDR) regime of primary interest for high-fidelity applica-

tions, the quantization cells are sufficiently small that the host signal can be modeled as uniformly

distributed within each cell. In this case, the expected squared error distortion of a uniform, scalar

quantizer with step size ∆k is the familiar

1
∆k

∫ ∆k/2

−∆k/2
x2 dx =

∆2
k

12
. (24)

Thus, the overall average expected distortion (1) is

Ds =
1

12L

∑
k

∆2
k. (25)

Combining (22) and (25) yields the “distortion-normalized” squared minimum distance,

d2
norm ≡ d2

min

Ds
=

3γc

Rm
, (26)

a quantity that can be used to characterize the achievable performance of QIM realizations more

generally, as we will develop.

5.2 Spread-transform Dither Modulation

One special class of coded binary dither modulation methods is what we refer to as spread-transform

dither modulation (STDM). We now develop its properties and quantify its advantages over other

forms of dither modulation, over additive spread-spectrum methods, and over spread LBM.

To introduce STDM, we begin by observing that the distortion-normalized squared minimum

distance (26) of binary dither modulation with uniform scalar quantization does not depend on the

sequence ∆k, i.e., on the distribution of the distortion across samples within the length-L block.

Thus, one is free to choose any distribution without sacrificing d2
norm, so the ∆k’s can be chosen to

optimize other characteristics of the embedding.

To understand this property, consider Figs. 4–6, each of which show the reconstruction points

of two quantizers for embedding one bit in a block of two samples. For each of the three systems,

the minimum distance—∆/
√

2—and the average squared error distortion—∆2/12 per sample—are
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Figure 5: Transform dither modulation with non-uniform quantization step sizes.
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Figure 6: Transform dither modulation with quantization of only a single transform component.
The quantization step size for the component of the host signal orthogonal to v is zero.
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identical. Thus, the robustness against bounded perturbations is the same in each case. However,

the quantization differs in each case. In Fig. 4, where scalar quantization is applied to each sample

separately, the quantization step sizes are the same for both samples. In Figs. 5 and 6, the samples

are first pretransformed and the resulting coefficients quantized unevenly. In particular, a unitary

transform (coordinate rotation) is applied to the pair of samples before quantization; the first

transform coefficient is the component of the host signal in the direction of v depicted. In Fig. 5,

the step size for quantizing the first transform coefficient is larger than that used to quantize the

second transform coefficient, which lies in the direction orthogonal to v. Finally, in the extreme

case of Fig. 6, the step size for the first coefficient is larger still, and that for the second coefficient

is zero, i.e., all embedding occurs in the first coefficient. In this case, the reconstruction points

become reconstruction lines, so to embed a 0-bit, the host signal is quantized to the nearest point

on a line labeled with a ×. To embed a 1-bit, the host signal is quantized to the nearest point on

a line labeled with a ◦.

While the three systems corresponding to Figs. 4–6 have the same minimum distance, the

number of perturbation vectors of minimum length that cause decoding errors is higher for the

case of Fig. 4 than for the case of Fig. 6. (For intermediate cases such as the one shown in Fig. 5,

where quantization step sizes in different dimensions are different but non-zero, the number of

perturbation vectors of minimum length that cause decoding errors is the same as in Fig. 4, but

these vectors are not orthogonal.) Thus, for probabilistic channels such as additive noise channels,

the probability of error is generally different in each case. For example, suppose a 0-bit is embedded

and the composite signal is the × point labeled with s in Figs. 4 and 6. If the channel output lies

in the decision region defined by the dashed box in Fig. 4 and defined by the two dashed lines in

Fig. 6, then the decoder will correctly determine that a 0-bit was embedded. If the perturbation

vector places the channel output outside the decision region, however, the decoder will make an

error with very high probability. (There is some possibility that the channel output is outside the

decision region but is still closer to a × point other than s than to the closest ◦. These events,

however, are very unlikely for many perturbation probability distributions that are of practical

interest.) Since the decision region of Fig. 6 contains the decision region of Fig. 4, it follows that

the probability of a correct decision in the case of non-uniform quantization step sizes is higher.

The unitary transform in the case of Fig. 6 not only facilitates a comparison of Figs. 4 and 6,

but also serves to spread any embedding-induced distortion over frequency and time/space when a

peak distortion constraint is imposed, for example. Although, the distortion is concentrated in only

one transform coefficient, if the energy of v is spread over space/time and frequency—for example,
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if v is chosen pseudorandomly—then the distortion will also be spread.

As we will see in subsequent sections of this paper, dither modulation methods have consider-

able performance advantages over previously proposed additive spread-spectrum and spread LBM

methods in a variety of contexts. However, much effort has already been invested in optimizing

both additive spread-spectrum and spread LBM systems, for example, by exploiting perceptual

properties of the human visual and auditory systems or designing receiver front-ends to mitigate

effects of geometric and other distortions. An additional advantage of STDM specifically over other

forms of dither modulation is that one can easily convert existing additive spread-spectrum and

spread LBM systems into STDM systems while retaining the other optimized components of the

system. In particular, it suffices to replace the addition step of additive spread-spectrum, i.e., (5),

or the quantize-and-replace step of spread LBM, i.e., (11), with the dithered quantization step of

STDM, i.e.,

s̃ = sTv = q(x̃ + d(m))− d(m). (27)

5.2.1 SNR advantage of STDM

In this section, we quantify the performance gain of STDM over additive spread-spectrum and

spread LBM from an SNR perspective that applies to a broad range of contexts. We focus our

analysis on the representative case of embedding one bit in a length-L block x using a unit-length

spreading vector v. Because, as (5), (11), and (27) reflect, in each case the embedding occurs

entirely in the projection of x onto v, a one-dimensional problem results. In addition, because all of

the embedding-induced distortion occurs only in the direction of v, the distortion in each case also

has the same temporal/spatial distribution and frequency distribution. Thus, one would expect

that any perceptual effects due to time/space masking or frequency masking are the same in each

case. Therefore, squared error distortion and SNR-type measures are more meaningful measure of

distortion when comparing these embedding methods than one might expect in other more general

contexts where squared error distortion may fail to capture certain perceptual effects.

SNR advantage of STDM over additive spread-spectrum Considering the case of additive

spread-spectrum first, since a(m) = ±√LDs in (5), we have

|a(1)− a(2)|2 = 4LDs. (28)
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For STDM (27),

min
(x̃1,x̃2)

|s̃(x̃1, 1)− s̃(x̃2, 2)|2 = ∆2/4 = 3LDs, (29)

where ∆ =
√

12LDs so that the expected distortion in both cases is the same, and where we have

used the fact that d(1) and d(2) are chosen such that |d(1)− d(2)| = ∆/2.

The decoder in both cases makes a decision based on ỹ , the projection of the channel output

y onto v. In the case of additive spread-spectrum, ỹ = a(m) + x̃ + ñ, while in the case of STDM,

ỹ = s̃(x̃ , m) + ñ, where ñ is the projection of the perturbation vector n onto v. We let P (·) be

some measure of energy. For example, P (x) = x2 in the case of a deterministic variable x, or

P (x) = varx when x is random. The energy of the interference or “noise” is P (x̃ + ñ) for additive

spread-spectrum, but only P (ñ) for STDM, i.e., the host signal interference for STDM is zero.

Thus, the SNR at the decision device is

SNRSS =
4LDs

P (x̃ + ñ)

for additive spread-spectrum and

SNRSTDM =
3LDs

P (ñ)

for STDM, where the “signal” energies P (a(1) − a(2)) and P
(
min(x̃1,x̃2) |s̃(x̃1, 1)− s̃(x̃2, 2)|) are

given by (28) and (29). Thus, the advantage of STDM over additive spread-spectrum is

SNRSTDM

SNRSS
=

3
4

P (x̃ + ñ)
P (ñ)

, (30)

which is typically very large since the channel perturbations ñ are usually much smaller than the

host signal x̃ if the channel output ỹ is to be of reasonable quality. For example, if the host signal-

to-channel noise ratio is 30 dB and x̃ and ñ are uncorrelated, then the SNR advantage (30) of

STDM over additive spread-spectrum is 28.8 dB.11

SNR advantage of STDM over spread LBM Spread-transform dither modulation methods

also have an SNR advantage over spread LBM methods. As we show in App. A, the distortion-

normalized squared minimum distance (26) of LBM is 7/4 ≈ 2.43 dB worse than that of dither

11Note that while the high SDR approximation (30) predicts that STDM is worse than additive spread-spectrum
by a factor of 4/3 = 1.25 dB when x̃ ≈ 0 (as would be the case, for example, if the host signal x had very little energy
in the direction of v), in fact if one chooses d(m) = ±∆/4, then it is straightforward to verify that STDM performs
as well as additive spread-spectrum in this low SDR regime.
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Figure 7: Spread-transform dither modulation vs. spread LBM. The embedding interval boundaries
of spread LBM, which are shown with solid lines, are the same for both × points and ◦ points. In
contrast, in the case of STDM, the ×-point embedding intervals, shown by solid lines, differ from
the ◦-point embedding intervals, shown by dashed lines. An SNR advantage of 7/4 = 2.43 dB for
STDM results.

modulation in the case of coded binary embedding with uniform, scalar quantization. Thus, for a

fixed rate and embedding-induced distortion, the squared-minimum distance, and hence the SNR

at the decision device, for spread LBM will be 2.43 dB worse than that of STDM, i.e.,12

SNRSTDM

SNRSLBM
=

7
4
≈ 2.43 dB (31)

This SNR advantage is illustrated in Fig. 7, where the quantizer reconstruction points and em-

bedding intervals for both spread LBM and STDM are shown, with the same embedding-induced

squared error distortion for both cases.

The preceding analysis establishes some important advantages of QIM methods over common

information embedding methods. In fact, it turns out that QIM methods are asymptotically optimal

in many key scenarios of interest. To develop these results, we next examine information embedding

within an information-theoretic framework.

12App. A also shows that for M -ary embedding the SNR gain grows to 2 (3 dB) as M →∞.
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6 Information Theoretic Optimality of QIM

This section explores the best possible rate-distortion-robustness performance that one could hope

to achieve with any information embedding system. Our analysis leads to insights about some

properties and characteristics of good information embedding methods, i.e., methods that achieve

performance close to the information-theoretic limits. In particular, a canonical “hidden QIM”

structure emerges for information embedding that consists of (1) preprocessing of the host signal,

(2) QIM embedding, and (3) postprocessing of the quantized host signal to form the composite

signal. One incurs no loss of optimality by restricting one’s attention to this simple structure.

We also derive sufficient conditions under which only distortion compensation postprocessing is

required. As we develop in Secs. 7 and 8, these conditions are satisfied in several important cases

of practical interest.

6.1 Communication over Channels with Side Information

The super-channel model of Sec. 2.2 and Fig. 2 facilitates our analysis, i.e., we view information

embedding as the transmission of a host-dependent distortion signal e over a super-channel with

side information or state x that is known at the encoder. In this section we also restrict our attention

to a squared error distortion constraint

1
N

N∑
i=1

e2
i ≤ Ds,

and a memoryless channel with known probability density function (pdf)

py|s(y|s) =
N∏

i=1

py |s(yi|si),

where yi and si are the ith components of y and s, respectively.13 Then, the super-channel is also

memoryless and has probability law

py|e,x(y|e,x) = py|s(y|x + e) =
N∏

i=1

py |s(yi|xi + ei) =
N∏

i=1

py |e,x(yi|ei, xi).

13Extension of results in this section to the case where the channel is only blockwise memoryless is straightforward
by letting yi and si be the ith blocks, rather than ith scalar components, of y and s. In this case, information rates
are measured in bits per block, rather than bits per sample.
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The capacity [31] of this super-channel is the reliable information-embedding rate Rm that is asymp-

totically achievable with long signal lengths N .

In non-watermarking contexts Gel’fand and Pinsker [32] and Heegard and El Gamal [33] have

determined the capacity of such a channel in the case of a random state vector x with independent

and identically distributed (iid) components when the encoder sees the entire state vector before

choosing the channel input e. In this case the capacity is

C = max
pu,e|x (u,e|x)

I(u; y)− I(u; x), (32)

where I(·; ·) denotes mutual information and u is an auxiliary random variable. Since pu,e|x(u, e|x) =

pu|x(u|x)pe|u,x(e|u, x), we can think of u in (32) as being generated from x , and, in turn, e from

u and x . While the mapping from x to u is in general probabilistic, from convexity properties

of mutual information, one can deduce that the maximizing distribution in (32) always has the

property that e is a deterministic function of (u, x) [32].

In the case of watermarking, the maximization (32) is subject to a distortion constraint E[e2] ≤
Ds. A formal proof of the extension of (32) to include this constraint is developed in [20]. Others

[18, 19, 16] are working on extending or have extended these results to the case where the channel

law py |s(y|s) is not fixed but rather is chosen by an attacker subject to a distortion constraint. A

related information-theoretic formulation can be found in [14].

As we shall see in the next section, one way to interpret (32) is that I(u; y) is the total number

of bits per host signal sample that can be transmitted through the channel, and I(u; x) is the

number of bits per sample that are allocated to the host signal x . The difference between the two

is the number of bits per host signal sample that can be allocated to the embedded information m.

6.1.1 Hidden QIM

As we show in this section, one can achieve the capacity (32) by a type of “hidden” QIM, i.e., QIM

that occurs in a domain represented by the auxiliary random variable u. One moves into and out

of this domain with pre- and post-quantization processing.

To develop this optimality of hidden QIM, we begin by adding an interpretation in terms of quan-

tization (source coding) to the proof of the achievability of capacity by Gel’fand and Pinsker [32],

the result of which is summarized as follows. Fig. 8 shows an ensemble of 2NRm quantizers, where

Rm = I(u; y) − I(u; x) − 2ε, where each source codeword (quantizer reconstruction vector) u is

randomly drawn from the iid distribution pu(u), which is the marginal distribution correspond-
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Figure 8: Capacity-achieving “hidden QIM”. One embeds by choosing a codeword u0 that is jointly
distortion-typical with x from the mth quantizer’s codebook. The distortion function is e2(u, x).
The decoder finds a codeword that is jointly typical with y. If this codeword is in the ith subset,
then m̂ = i.
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ing to the host signal distribution px(x) and the maximizing conditional distribution pu,e|x(u, e|x)

from (32). Although the source codebooks are therefore random, both the encoder and decoder, of

course, know the codebooks. Each codebook contains 2N [I(u;x)+ε] codewords so there are 2N [I(u;y)−ε]

codewords total.

QIM embedding in this u-domain corresponds to finding a vector u0 in the mth quantizer’s

codebook that is jointly distortion-typical with x and generating

e(u0, x) = [e(u0,1, x1) · · · e(u0,N , xN )]T .

By distortion-typical, we mean that u0 and x are jointly typical and ‖e(u0, x)‖2 ≤ N(Ds + ε),

i.e., the function e2(u, x) is the distortion function in the u-domain. Since the mth quantizer’s

codebook contains more than 2NI(u;x) codewords, the probability that there is no u0 that is jointly

distortion-typical with x is small.14 Thus, the selection of a codeword from the mth quantizer is

the quantization part of QIM, and the generation of e, and therefore s = x + e, from the codeword

u0 and x is the post-quantization processing.

The decoder finds a u that is jointly typical with the channel output y and declares m̂ = i if this

u is in the ith quantizer’s codebook. Because the total number of codewords u is less than 2NI(u;y),

the probability that a u other than u0 is jointly typical with y is small. Also, the probability that

y is jointly typical with u0 is close to 1.15 Thus, the probability of error Pr[m̂ 6= m] is small, and

we can indeed achieve the capacity (32) with QIM in the u-domain.

The remaining challenge, therefore, is to determine the right preprocessing and postprocessing

given a particular channel (attack) py |s(y|s). As mentioned above, for a number of important cases,

it turns out that the only processing required is post-quantization distortion compensation. We

discuss these cases in the next section.

6.1.2 Optimality of distortion-compensated QIM

When distortion-compensated QIM (DC-QIM) as introduced in Sec. 4.1 is viewed as an instance of

hidden QIM, we obtain that u is a quantized version of αx. We show in this section that suitably

coded versions DC-QIM can achieve capacity whenever the maximizing distribution pu,e|x(u, e|x)

in (32) is of a form such that the postprocessing is linear, i.e., when, without loss of generality, e

14This principle is, of course, one of the main ideas behind the rate-distortion theorem [31, Ch. 13].
15These principles are, of course, two of the main ideas behind the classical channel coding theorem [31, Ch. 8].
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is generated according to

e = u − αx . (33)

To see that DC-QIM can achieve capacity when the maximizing pdf in (32) satisfies (33), we

show that one can construct an ensemble of random DC-QIM codebooks that satisfy (33). First,

we observe that quantizing x is equivalent to quantizing αx with a scaled version of the quantizer

and scaling back the result, i.e.,

q(x; m, ∆/α) =
1
α
q(αx; m, ∆). (34)

where q(·; ·, ·) is as defined following (19). Then, rearranging terms in the DC-QIM embedding

function (19) and substituting (34) into the result, we obtain

s(x, m) = q(x; m, ∆/α) + (1− α)[x− q(x; m, ∆/α)]

= αq(x; m, ∆/α) + (1− α)x

= q(αx; m, ∆) + (1− α)x. (35)

We construct our random DC-QIM codebooks by choosing the codewords of q(·; m, ∆) from the

iid distribution pu(u), the one implied by the maximizing pdf in (32) together with the host pdf

px(x). (Equivalently, we choose the codewords of q(·; m, ∆/α) in (19) from the distribution of u/α,

i.e., the iid distribution αpu(αu).) Our quantizers q(·; m, ∆) choose a codeword u0 that is jointly

distortion-typical with αx. The decoder looks for a codeword in all of the codebooks that is jointly

typical with the channel output. Then, following the achievability argument of Sec. 6.1.1, we can

achieve a rate I(u; y)− I(u; x). From (35), we see that

s(x, m) = x + [q(αx; m, ∆)− αx] = x + (u0 − αx).

Since s(x, m) = x+e, we see that e = u0−αx. Thus, if the maximizing distribution in (32) satisfies

(33), our DC-QIM codebooks can also have this distribution and, hence, achieve capacity (32).

As a final comment, it is worth emphasizing that QIM systems are optimal in other important

scenarios as well. As one example, in the noise-free case (y = s), which arises, for example, when

a discrete-valued composite signal is transmitted over a digital channel with no errors, QIM is

26



optimal even without distortion compensation, and achieves capacity [27]

Cnoise−free = max
py|x (y|x)

H(y |x). (36)

As a second example, and as shown in [27], QIM is optimal even when the host signal is also

available at the decoder achieving the capacity

Cknown = max
pe|x (e|x)

I(e; y |x) (37)

determined by Heegard and El Gamal [33].

We next examine some key scenarios when the optimality condition (33) is met.

7 Gaussian Channels

In this section we examine the ultimate performance limits of information embedding methods

when both the host signal is white and Gaussian, the channel is an additive white Gaussian noise

(AWGN) channel, and the host and channel noise are independent of one another. Extensions

to colored host and/or colored channel cases are developed in [15] [27]. Our main result of the

section is that DC-QIM is optimal for this class of channels, and that in addition the optimum

distortion compensation parameter α is also given by (20), which maximized SNR in uncoded

DC-QIM systems.

In general, the embedding strategies optimized for Gaussian channel models can be expected

to be good designs for a variety of applications in which one primarily requires robustness against

unintentional attacks.16 And while Gaussian host models are not always accurate, the better the

host-signal interference rejection properties of an information embedding system, the smaller the

role we might expect the host signal model to play in determining the ultimate performance of such

systems.

7.1 Capacities and the optimality of DC-QIM

Specializing the formulation of Sec. 6.1 to the Gaussian scenario of interest, with the zero-mean,

variance-σ2
x variables xi denoting elements of the N -dimensional host signal vector x, and similarly

16Indeed, these models can even apply to optimal, i.e., rate-distortion achieving [31], lossy compression of a Gaussian
source, as discussed in [27].
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the zero-mean, variance-σ2
n variables ni denoting elements of the corresponding noise vector n, the

distortion constraint can be expressed as

1
N

N∑
i=1

e2
i ≤ Ds,

with the corresponding constraint on pu,e|x(u, e|x) in (32) being E[e2] ≤ Ds. We see that squared

error distortion-constrained, Gaussian information embedding is equivalent to power-constrained

communication over a Gaussian channel with Gaussian side information known at the encoder, a

case for which Costa [34] has determined the capacity to be, expressed in terms of the (embedding

induced) distortion-to-noise ratio (DNR),

CGauss =
1
2

log2(1 + DNR), DNR =
Ds

σ2
n

. (38)

Remarkably, the capacity is independent of the signal variance σ2
x and in fact, as we’ll discuss later

in this section, is the same as in the case when the host signal x is known at the decoder. Note

that this implies that an infinite energy host signal causes no decrease in capacity in this Gaussian

case, i.e., good information embedding systems can completely reject host-signal interference in the

Gaussian case.

Based on our earlier results, to establish the optimality of DC-QIM for this channel, it suffices

to verify that (33) is satisfied. This follows from the proof [34] of (38). In particular, as shown in

[34], the pdf that maximizes (32) is indeed one implied by (33), for some parameter α, where u is

chosen as a function of x so that e ∼ N(0, Ds) and so that the pair e and x are independent. To

see this, note that for a fixed value of α, an achievable rate I(u; y)− I(u; x) is [34]

R(α) =
1
2

log2

(
Ds(Ds + σ2

x + σ2
n)

Dsσ2
x(1− α)2 + σ2

n(Ds + α2σ2
x)

)
,

which can also be written in terms of the DNR and the host SNR (SNRx = σ2
x/σ2

n),

R(α) =
1
2

log2

(
DNR(1 + DNR + SNRx)

DNRSNRx(1− α)2 + (DNR + α2SNRx)

)
. (39)

This rate is maximized by setting [cf. (20)]

αcap =
DNR

DNR + 1
(40)
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from which we conclude that the rate (38) is achievable. To establish that (38) is also the maximum

achievable rate, it suffices to show that it is the capacity when x is known at the decoder, since one

obviously cannot do better in the host-blind case.

To develop the known-host capacity, first recall that the capacity is given by (37). Again, the

maximization is subject to a distortion constraint, which in the case of white noise is E[e2] ≤
Ds. Because subtracting a known constant from y does not change mutual information, we can

equivalently write

C = max
pe|x (e|x)

I(e; y − x |x).

Noting that y−x = e+n, we immediately conclude that in the case of an AWGN channel the known-

host capacity is indeed given by (38), where the maximizing distribution pe|x(e|x) is a zero-mean

Gaussian distribution with variance Ds.

In the known-host case, additive spread-spectrum is optimal, and optimal additive spread-

spectrum systems superimpose zero-mean iid Gaussian sequences with variance Ds onto the host

signal. However, it is important to note that QIM is also optimal in this case as well—as discussed

in [15], quantizers of optimal QIM systems have reconstruction sequences si chosen iid from a

zero-mean Gaussian distribution with variance σ2
x + Ds. Hence, yet another attractive property of

QIM methods is that they are optimal in more general Gaussian broadcast scenarios where some

intended recipients of the embedded information know the host signal and some do not.

As a final comment, several of the methods we have discussed can be optimal in the small host

signal interference scenario (x → 0). In fact, the capacity (38) is rather immediate in this scenario:

Fig. 2 reduces to the classical communication problem considered in, e.g., [31] since s → e, so

that the capacity is the usual mutual information between e = s and y maximized over all pe(·)
such that E[e2] ≤ Ds. In the additive white Gaussian noise channel case, specifically, (38) results.

Examining (39) in the associated regime (SNRx → 0), we see that distortion-compensated QIM

with any α, including α = 1 (regular QIM), is optimal in this small host interference scenario. As

one might expect, additive spread spectrum systems can be capacity-achieving in this limit as well,

which we will see more explicitly in Sec. 7.3.4.

7.2 Capacities for Hybrid Transmission

In this section, we consider scenarios corresponding to applications in which information embedding

is part of a hybrid transmission scheme. We investigate two classes of such schemes: analog-digital

digital-digital transmission. In the former class, the host is an analog signal, as arises in, for
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example, the digital audio broadcasting application. In the latter class, the host signal is itself

a digital signal, which has implications for broadcast transmission and related applications [31,

Ch. 14].

In both cases, one is generally most concerned with the quality of the received signals, i.e., the

channel output, rather than the channel input (composite signal).

7.2.1 Analog host signals

In this section, we determine how reliable embedding at a given rate impacts the quality with which

an analog host signal is received and can be decoded with its conventional receiver from a noisy

channel.

In general, the effect of the embedding is to create an additional noise source DNR times as

strong as the channel noise, and therefore, the received signal quality drops by a factor of (1+DNR)

or

10 log10(1 + DNR) dB. (41)

For example, in the scenario analyzed in Sec. 7.1, optimum DC-QIM results in an embedding-

induced distortion that looks like white noise with variance Ds. With no embedding, one would

have had a received host signal-to-noise ratio of SNRx = σ2
x/σ2

n. Due to the additional interference

from the embedding-induced distortion, however, the received host SNR drops to

σ2
x

Ds + σ2
n

=
SNRx

1 + DNR
,

a drop of 1 + DNR.

Since the capacity in bits per dimension (bits per host signal sample) is given by (38), and there

are two independent host signal samples per second for every Hertz of host signal bandwidth [28],

the capacity in bits per second per Hertz is

C = log2(1 + DNR) b/s/Hz. (42)

Taking the ratio between (42) and (41), we see that the “value” in embedded rate of each dB drop

in received host signal quality is

C =
log2(1 + DNR)

10 log10(1 + DNR)
=

1
10

log2 10 ≈ 0.3322 b/s/Hz/dB (43)
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Thus, the available embedded digital rate in bits per second depends only on the bandwidth of

the host signal and the tolerable degradation in received host signal quality, and is approximately

1/3 b/s for every Hz of bandwidth and every dB drop in received host SNR. It is worth noting

that, as developed in [15, 27], these results carry over to the case of colored host and/or colored

channel cases as well.

Additional insights into the performance limits of such systems when the digital signal is specif-

ically information for refining the analog signal, as arises in applications involving the upgrading

of analog infrastructure, are developed in [20].

7.2.2 Coded digital host signals

When the host signal is a coded digital signal, an alternative measure of the received host signal

quality is the capacity of the corresponding host digital channel. For example, in the case of white

noise and a white host signal,17 if there were no embedding, the capacity corresponding to a host

digital signal power of σ2
x and a noise variance of σ2

n is

R0 =
1
2

log2(1 + SNRx).

Embedding an additional digital signal within the host digital signal drops the host digital capacity

to

R1 =
1
2

log2

(
1 +

SNRx

1 + DNR

)

due to the drop in received host SNR of 1 + DNR. Unlike in the case of an analog host signal, if

one must actually lower the rate of the coded host digital signal as a result of the embedding, then

one may have to redesign both the digital encoder that generates this coded digital host signal and

the corresponding decoder. Thus, depending on the designed noise margin of the original digital

host signal, backwards-compatibility may or may not be possible.

However, even when digital-digital transmission cannot be backwards compatible, using infor-

mation embedding for simultaneous transmission of two digital signals is potentially attractive from

the point of view of complexity and privacy. In particular, the decoder for the host signal need not

decode (nor know how to decode) the embedded signal, and vice-versa.

As discussed further in [27], this is qualitatively different behavior from the superposition coding

17As is well known [31], white Gaussian coded signals are capacity-achieving for transmission over additive white
Gaussian noise channels, so this is a good model for the host signal in this case.
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and successive cancellation decoding one might otherwise use for simultaneous transmission of two

digital signals, where one of the receivers needs to decode both messages to receive its own.

Interestingly, the information embedding approach is equally efficient. To see this, we note that

the embedded digital channel rate is given by (38),

R2 =
1
2

log2(1 + DNR)

so that the combined rate of the two channels is

R1 + R2 =
1
2

log2(1 + DNR + SNRx).

Since the associated expended power is Ds + σ2
x , we conclude that this digital-over-digital trans-

mission strategy is indeed efficient: the combined rate R1 + R2 is as large as the achievable rate

using a single digital signal with this same total power.

7.3 Gaps to Capacity

In Sec. 7.1, we saw that DC-QIM is a capacity-achieving strategy. In this section, for comparison

we evaluate the degree to which specific strategies such as regular QIM (i.e., without distortion

compensation), coded additive spread-spectrum, uncoded STDM, and uncoded generalized LBM

can each approach capacity—and hence the performance of DC-QIM—when suitably optimized.

We quantify the performance of these systems in terms of the additional DNR required to achieve

the same rate as a capacity-achieving system.

7.3.1 Regular QIM gap to capacity

As we now show, the performance of the best QIM methods without distortion compensation can

approach the Gaussian capacity at high rates and is within 4.3 dB of capacity at low rates, indicating

that the QIM class is large enough to include very good embedding functions and decoders.

To develop a lower bound on the achievable rate of QIM without distortion-compensation, we

begin by specializing (39) to the case α = 1, resulting in

RQIM ≥ 1
2

log2

(
DNR

1 + DNR + SNRx

DNR + SNRx

)
, (44)

32



where to achieve this bound we choose reconstruction points from the pdf implied by (33).18 The

righthand side of (44) is generally not the capacity of QIM, however—i.e., QIM systems can achieve

a rate greater than the lower bound (44). Indeed, the righthand side of (44) actually approaches

−∞ in the limit of low DNR.

A tighter lower bound is obtained by developing a different lower bound on the capacity of a par-

ticular subclass of QIM methods we refer to as “spread-transform QIM.” In spread-transform QIM,

which is a generalization of STDM as developed in Sec. 5.2, the host signal vector x = [x1 · · · xN ]T is

projected onto N/LST orthonormal vectors v1, . . . ,vN/LST
∈ RN to obtain transformed host signal

samples x̃1, . . . , x̃N/LST
, which are quantized using QIM. Because projection onto the vectors vi

represents a change of orthonormal basis, the transformed host signal samples and the transformed

noise samples ñ1, . . . , ñN/LST
, which are the projections of the original noise vector n = [n1 · · · nN ]T

onto the orthonormal vectors vi, are still independent, zero-mean, Gaussian random variables with

the same variance as the original host signal and noise samples, respectively. However, if the

distortion per original host signal sample is Ds, then the distortion per transformed host signal

sample is LSTDs. Thus, we obtain a “spreading gain” of LST in terms of DNR, but the number

of bits embedded per original host signal sample is only 1/LST times the number of bits embed-

ded per transformed host signal sample. Thus, one can determine an achievable rate RSTQIM of

spread-transform QIM by appropriately modifying (44) to obtain

RSTQIM ≥ 1
2LST

log2

(
LST ·DNR

1 + LST ·DNR + SNRx

LST ·DNR + SNRx

)

≥ 1
2LST

log2(LST ·DNR). (45)

To upper bound the gap between QIM and capacity we first recognize from (45) that the

minimum DNR required for QIM to achieve a rate R asymptotically with large N is

DNRQIM ≤ 22LSTR

LST
, (46)

which is minimized at LST = 1/(2R ln 2).19 However, LST ≥ 1 even in the limit of large N to have

18The pdf of the reconstruction points u = s in this case is N(0, Ds + σ2
x ), which is not the same as the well-known

rate-distortion optimal pdf [31] for quantizing Gaussian random variables, which is N(0, σ2
x −Ds).

19Note that since
N(

N
LST

+ 0.5
) ≤ N

round
(

N
LST

) ≤ N(
N

LST
− 0.5

) ,

one can indeed approach this optimum spreading gain LST in the limit of large N even though N/LST need be a
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N/LST ≤ N . Thus, if one sets

LST = max
{

1
2R ln 2

, 1
}

, (47)

then (46) remains a valid upper bound on the required DNR for a QIM method to achieve a rate

R. From (38) we see that the minimum DNR required for a capacity-achieving method to achieve

a rate R is DNRopt = 22R − 1, which when combined with (46) yields the following upper bound

between QIM and the Gaussian capacity:

DNRQIM

DNRopt
≤ 22LSTR

LST (22R − 1)
. (48)

This expression is plotted in Fig. 9, where LST is given by (47).

We now examine the asymptotic limits of (48) at low and high rates. Eq. (47) implies LST =

1/(2R ln 2) in the limit of small R, so in this limit (48) approaches

DNRQIM

DNRopt
≤ 22LSTR

LST (22R − 1)

=
21/ ln 2(2R ln 2)

22R − 1

= e
2R ln 2
22R − 1

→ e, as R → 0.

Thus, the gap is at most a factor of e (approximately 4.3 dB) in the limit of low rates. In the limit

of large R, (47) implies LST = 1 so (48) approaches

DNRQIM

DNRopt
=

22R

22R − 1
→ 1, as R →∞.

Thus, QIM asymptotically achieves capacity at high embedding rates.

As we described in Sec. 7.2, in hybrid transmission applications one may be concerned about

the degradation to the received host signal, which is (1+DNR) rather than DNR. The gap in DNR

(48) is larger than the gap in (1 + DNR), which has a corresponding upper bound

1 + DNRQIM

1 + DNRopt
≤ 1 + 22RLST

LST

22R
.

This gap is plotted in Fig. 10 as a function of 2R, the rate in b/s/Hz. Again, LST is given by (47)

positive integer less than or equal to N .
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Figure 9: DNR gap between spread-transform QIM and Gaussian capacity (achieved by DC-QIM).
The maximum gap is a factor of e (≈ 4.3 dB).
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Figure 10: Received host SNR gap (1+DNR) between spread-transform QIM and capacity (achieved
by DC-QIM).

35



since minimizing DNRQIM also minimizes 1+DNRQIM. Thus, for example, at the (near) worst-case

digital rate of 1 b/s/Hz using QIM requires at most 1.6 dB more drop in analog channel quality

than the approximately 3 dB drop required for DC-QIM (Sec. 7.2.1).

7.3.2 Uncoded STDM gap to capacity

The results above can be compared to the achievable performance of uncoded binary spread-

transform dither modulation (STDM) with uniform scalar quantization as a minimal-complexity

realization of QIM.

The gap between uncoded STDM and capacity can easily be quantified for low rates (Rm ≤ 1),

which are typical in many applications, at a given probability of error. A straightforward union

bound on the bit-error probability of uncoded binary STDM with uniform scalar quantization is

(see Fig. 6)

Pb ≤ 2 Q




√
d2

min

4σ2
n


 .

This bound is reasonably tight for low error probabilities, and from (26) we can write this probability

of error in terms of the rate-normalized distortion-to-noise ratio DNRnorm = DNR/Rm,

Pb ≈ 2 Q

(√
3 ·DNR

4Rm

)
= 2 Q

(√
3
4
DNRnorm

)
. (49)

A capacity-achieving method can achieve arbitrarily low probability of error as long as Rm ≤ CGauss,

which using (38) can be expressed as
DNR

22Rm − 1
≥ 1.

For low embedding rates Rm, 22Rm−1 ≈ 2Rm ln 2 so the minimum required DNRnorm for arbitrarily

low probability of error is

DNRnorm ≥ 2 ln 2 ≈ 1.4 dB. (50)

The probability of error Pb of STDM is plotted as a function of DNRnorm in Fig. 11. The required

DNRnorm for a given Pb can be compared to (50) to determine the gap to capacity. For example, at

an error probability of 10−6, uncoded STDM is about 13.6 dB from capacity. One can reduce this

gap by at least 9.3 dB through channel coding, vector quantization, and non-dithered quantization.

The remaining gap (at most 4.3 dB) is the gap between QIM and capacity and can be closed with

distortion compensation. As shown in [15, 27], it is fairly easily to close the gap between uncoded
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Figure 11: Uncoded spread-transform dither modulation (STDM) gap to Gaussian capacity. The
solid curve shows the bit-error probability for uncoded STDM as a function of rate-normalized
distortion-to-noise ratio (DNRnorm). The dashed curve is the minimum required DNRnorm for
reliable information-embedding for any embedding method.

STDM (with uniform scalar quantizers) and capacity by about 6 dB using practical channel codes

and distortion compensation.

7.3.3 Uncoded spread LBM gap to capacity

The gap to capacity for uncoded binary spread LBM based on uniform, scalar quantization also

follows readily from the results of App. A, which shows that the distortion-normalized minimum

distance for this form of spread LBM is a factor of 7/4 ≈ 2.43 dB worse than that of STDM (26).

Thus, the LBM counterpart to (49) is that the bit-error probability of uncoded spread LBM is

Pb ≈ 2 Q

(√
3
7
DNRnorm

)
. (51)

Thus, the gap to capacity of uncoded binary spread LBM at an error probability of 10−6 is about

16 dB, 2.4 dB more than the 13.6-dB gap of uncoded binary STDM. Furthermore, as also discussed

in App. A, for M -ary implementations the gap widens by an additional 0.6 dB as M →∞.
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7.3.4 Coded additive spread-spectrum gap to capacity

For additive spread-spectrum, where s = x + w(m), the distortion signal in Fig. 2 is not a function

of the host signal: e(x , m) = w(m). Thus, y = s + n = e + x + n. The distortion constraint is

still E[e2] = Ds so that in the Gaussian case considered here, the achievable rate of an additive

spread-spectrum method is the well-known [31] Gaussian channel capacity, treating both x and n

as interference sources,20

RSS =
1
2

log2

(
1 +

Ds

σ2
x + σ2

n

)
=

1
2

log2

(
1 +

DNR
SNRx + 1

)
, (52)

where, again, SNRx is the ratio between the host signal variance and the channel noise variance.

Comparing (52) to (38), we see that the gap to capacity of additive spread-spectrum is

DNRss

DNRopt
= SNRx + 1, (53)

which is typically large, since SNRx must be large so that channel noise will not excessively degrade

signal quality.

In fact, in the high signal-to-distortion (SDR) limit where σ2
x/Ds À 1, the achievable rate of

additive spread-spectrum (52) clearly approaches zero, again reflecting the inability of additive

spread-spectrum methods to reject host signal interference like other methods.

At the opposite extreme, when SNRx → 0 the host interference is small so the gap (53) disap-

pears, and indeed additive spread spectrum is an optimum embedding strategy for this case, along

with both DC-QIM and QIM as discussed at the end of Sec. 7.1.

The other scenario in which additive spread-spectrum can be optimal is when the host is known

at the decoder, which also corresponds to a non-interfering host situation.

7.3.5 Known-host case

As discussed at the end of Sec. 7.1, both capacity-achieving QIM and capacity-achieving additive

spread-spectrum methods exist when the host signal is known at the decoder. Although QIM

realizations in the form of coded dither modulation with uniform, scalar quantization are not

optimal in this case, for AWGN channels one can achieve performance within πe/6 ≈ 1.53 dB of

capacity as we show below. We consider the case of dither signals with a uniform distribution over

20This rate is also the capacity when n is non-Gaussian, but still independent of s, and a correlation detector is
used for decoding [35].
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the interval [−∆/2, ∆/2]. In this case,

s = q(x + d)− d = x + e,

where the quantization error e is uniformly distributed over the interval [−∆/2, ∆/2] and statisti-

cally independent of x [29]. Thus, the achievable rate I(e; e+n) is slightly lower than the case where

e is Gaussian. The entropy power inequality can be used to show that the decrease in achievable

rate is bounded by [36]

CGauss,known −Rdith ≤ 1
2

log2

1 + DNR
1 + (6/πe)DNR

. (54)

This gap approaches the upper limit of 1
2 log2

πe
6 ≈ 0.2546 bits/dimension as the DNR gets large.

For any finite DNR, the gap is smaller. By subtracting the upper bound on the gap (54) from the

capacity (38), one obtains a lower bound on the achievable rate of this type of dither modulation:

Rdith ≥ 1
2

log2

(
1 +

6
πe

DNR
)

. (55)

Thus, dither modulation with uniform scalar quantization in this case is at most πe/6 ≈ 1.53 dB

from capacity.

8 Intentional Attacks

We now turn our attention from AWGN channel models for unintentional attacks, to some alterna-

tive models for intentional attacks. Intentional, distortion-constrained attacks may be encountered

in copyright, authentication, and covert communication applications. In these kinds of applications,

attackers generally attempt to remove or alter the embedded information, and face a distortion con-

straint on their signal manipulations so that the integrity of the host signal is not compromised.

An attacker’s ability to prevent reliable watermark decoding depends on the amount of knowl-

edge that the attacker has about the embedding and decoding processes. To limit such knowledge,

some digital watermarking systems use keys, parameters that allow appropriate parties to embed

and/or decode the embedded signal. The locations of the modulated bits and the pseudo-noise

vectors in an additive spread-spectrum and generalized LBM systems are examples of keys. If only

certain parties privately share the keys to both embed and decode information, and no one else can

do either of these two functions, then the watermarking system is a private-key system. Alterna-
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tively, if some parties possess keys that allow them to either embed or decode, but not both, then

the system is a public-key system since these keys can be made available to the public for use in one

of these two functions without allowing the public to perform the other function. However, in some

scenarios it may be desirable to allow everyone to embed and decode watermarks without the use of

keys. For example, in a copyright ownership notification system, everyone could embed the ASCII

representation of a copyright notice such as, “Property of ...” in their copyrightable works. Such

a system is analogous to the system currently used to place copyright notices in (hardcopies of)

books, a system in which there is no need for a central authority to store, register, or maintain sep-

arate keys—there are none—or watermarks—all watermarks are English messages—for each user.

The widespread use of such a universally accessible “no-key” system requires only standardization

of the decoder so that everyone will agree on the decoded watermark, and hence, the owner of the

copyright.

We analyze both private-key and no-key systems in the sequel, and establish the attractiveness

of QIM in both cases.

8.1 Attacks on Private-key Systems

Although the attacker does not know the key in a private-key scenario, he or she may know the

basic algorithm used to embed the watermark. In [16], Moulin and O’Sullivan model such a scenario

by assuming that the attacker knows the codebook distribution, but not the actual codebook. As

we now develop, exploiting results results of Moulin and O’Sullivan in this private-key scenario, we

determine that DC-QIM methods are optimal (capacity-achieving) against squared error distortion-

constrained attackers.

Moulin and O’Sullivan have derived both the capacity-achieving distribution and an explicit

expression for the capacity (32) in the case where the host is white and Gaussian and the attacker

faces an expected perturbation energy constraint E[‖n‖2] ≤ σ2
n. In this case the capacity is [16]

CGauss,private =
1
2

log2

(
1 +

DNRattack

β

)
, β =

SNRx ,attack + DNRattack

SNRx ,attack + DNR− 1
,

where DNRattack = Ds/σ2
n is the distortion-to-perturbation ratio and SNRx ,attack = σ2

x/σ2
n is the

host signal-to-perturbation ratio. The maximizing distribution is such that [16]

e = u − αGauss,privatex ,

40



with e ∼ N(0, Ds) statistically independent of x and

αGauss,private =
DNRattack

DNRattack + β
. (56)

Since this distribution satisfies the condition (33), we can infer from our analysis in Sec. 6.1.2 that

distortion-compensated QIM can be used to achieve capacity against these attacks. Moreover, (56)

gives the optimal distortion-compensation parameter.

Moulin and O’Sullivan have also considered the case of host signals that are not necessarily

Gaussian but that have zero-mean, finite-variance, and bounded and continuous pdfs. In the

limit of small Ds (high SDR) and σ2
n, a limit of interest in high-fidelity applications, the capacity

approaches

Chigh−fidelity → 1
2

log2 (1 + DNRattack) ,

and the capacity-achieving distribution is such that

e → u − αhigh−fidelityx ,

where, again, e ∼ N(0, Ds) is statistically independent of x [16]. Since this distribution satisfies

the condition (33), we can again conclude that distortion-compensated QIM can achieve capacity

in this high-fidelity limit. The capacity-achieving distortion-compensation parameter is [16]

αhigh−fidelity =
DNRattack

DNRattack + 1
.

8.2 Attacks on No-Key Systems

In contrast to the scenario above, in no-key systems an attacker has full knowledge of the embedding

and decoding processes, including all codebooks. For this case, some deterministic models we

develop in this section are better for characterizing the associated worst-case in-the-clear (i.e.,

fully informed) attacks. With these models, we show that QIM methods in general, and dither

modulation in particular, are robust and achieve provably better rate-distortion-robustness trade-

offs than both additive spread-spectrum and generalized LBM techniques.

We consider two models for such attackers: (1) a bounded perturbation channel model in which

the squared error distortion between the channel input and channel output is bounded and (2) a

bounded host-distortion channel model in which the squared error distortion between the host

signal and channel output is bounded. In each case, we develop conditions under which error-
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free decoding is possible with various implementations of QIM and DC-QIM, and quantify their

advantages over the corresponding realizations of additive spread-spectrum and generalized LBM.

8.2.1 Bounded perturbation channel

The bounded perturbation channel is one in which the attacker can perturb the composite signal

in any way it desires (based on its full knowledge of the composite signal and the embedding

algorithm), provided the energy in the perturbation vector does not exceed a prescribed level, i.e.,

(16), which reflects a requirement that the attacker not excessively degrade the original composite

signal. Thus, this channel model imposes only a maximum distortion21 or minimum SNR constraint

between the channel input and output.

Binary dither modulation with uniform scalar quantization One can combine the guar-

anteed error-free decoding condition (17) for a minimum distance decoder (15) with the distortion-

normalized minimum distance (26) of binary dither modulation with uniform scalar quantization

to compactly express its achievable performance as

(d2
min/Ds)Ds

4Nσ2
n

= γc
3/4

NRm

Ds

σ2
n

> 1, (57)

or, equivalently, its achievable rate as

supRm =
3γc

4N

Ds

σ2
n

. (58)

One can view the achievable rate (58) as the deterministic counterpart to the more conventional

notions of achievable rates and capacities of random channels discussed in Secs. 6 and 7.

Additive spread-spectrum The nonzero minimum distance of QIM methods offers quantifiable

robustness to perturbations, even when the host signal is not known at the decoder. In contrast,

additive spread-spectrum methods offer relatively little robustness if the host signal is not known

21Some types of distortion, such as geometric distortions, can be large in terms of squared error, yet still be small
perceptually. However, in some cases these distortions can be mitigated either by preprocessing at the decoder or
by embedding information in parameters of the host signal that are less affected (in terms of squared error) by these
distortions. For example, a simple delay or shift may cause large squared error, but the magnitude of the DFT
coefficients are relatively unaffected.
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at the decoder. As discussed in Sec. 3, these methods have linear embedding functions of the form

s(x, m) = x + w(m), (59)

where w(m) is a pseudo-noise vector. From the definition of minimum distance (13),

dmin = min
(i,j):i6=j

min
(xi,xj)

‖xi + w(i)− xj −w(j)‖
= min

(i,j):i6=j
‖xi + w(i)− (xi + w(i)−w(j))−w(j)‖

= 0,

i.e., the minimum distance is zero.

Thus, although these methods may be effective when the host signal is known at the decoder,

when the host signal is not known, they offer no guaranteed robustness to perturbations, i.e., no

achievable rate expression analogous to (58) exists for additive spread-spectrum. As is evident

from (59), in an additive spread-spectrum system, x is an additive interference, which is often

much larger than w due to the distortion constraint. In contrast, the quantization that occurs with

QIM provides immunity against this host signal interference, as discussed in Sec. 4.22

Generalized LBM As shown in App. A, the distortion-normalized minimum distance of gen-

eralized binary LBM with uniform scalar quantization is about 2.43 dB worse than that of the

corresponding dither modulation strategy. Therefore, its achievable rate-distortion-robustness per-

formance is also about 2.43 dB worse than (57). Again, as also developed in the appendix, for

M -ary implementations, the gap grows to 3 dB for large M .

8.2.2 Bounded host-distortion channel

As an alternative to the bounded perturbation channel, some attackers may work with distortion

constraint between the channel output and the host signal, rather than the channel input, since this

distortion is the most direct measure of degradation to the host signal. For example, if attackers

have partial knowledge of the host signal, which may be in the form of a probability distribution, so

that they can calculate this distortion, then it may be appropriate to bound the expected distortion

22Another way to understand this host-signal interference rejection is to consider, for example, that a quantized
random variable has finite entropy while a continuous random variable has infinite entropy.
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Table 1: Attacker’s distortion penalties. The distortion penalty is the additional distortion that
an attacker must incur to successfully remove a watermark. A distortion penalty less than 0 dB
indicates that the attacker can actually improve the signal quality and remove the watermark
simultaneously.

Embedding Distortion Penalty
Method (Dy/Ds)

Regular QIM 1 +
d2

norm

4N
> 0 dB

Binary Dith. Mod.
w/uni. scalar quant.

2.43 dB ≥ 1 + γc
3/4

NRm
> 0 dB

DC-QIM −∞ dB
Additive

spread-spectrum
−∞ dB

LBM ≤ 0 dB
Binary LBM

w/uni. scalar quant.
-2.43 dB

Dy = E[D(y, x)], where this expectation is taken over the conditional probability density px|s(x|s).23
We refer to this as the bounded host-distortion channel.

For this channel we measure robustness to attacks by the minimum expected distortion Dy for

a successful attack, where the expectation is taken with respect to px|s(x|s). The ratio between Dy

and the expected embedding-induced distortion Ds is the distortion penalty that the attacker must

pay to remove the watermark and, hence, is a figure of merit measuring the robustness-distortion

trade-off at a given rate. Distortion penalties for the primary methods of interest are derived below

and summarized in Table 1 for the high SDR regime of primary interest. As this table reflects,

among these methods considered, only QIM methods (including binary dither modulation with

uniform scalar quantization) are robust enough such that the attacker must degrade the host signal

quality to remove the watermark.

Regular QIM We first consider the robustness of regular quantization index modulation. For

any distortion measure, as long as each reconstruction point s lies at the minimum distortion point

of its respective quantization cell, the QIM distortion penalty is greater than or equal to 1 since

23Note that if the attacker has full knowledge of the host signal, he or she can trivially remove the embedded
information by setting y = x, so Dy = 0. We restrict our attention to the more realistic scenario in which an attacker
has only partial knowledge of the host, in the form of a conditional pdf.
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any output y that an attacker generates must necessarily lie away from this minimum distortion

point. Equality occurs only if each quantization cell has at least two minimum distortion points,

one of which lies in the incorrect decoder decision region. For expected squared-error distortion,

the minimum distortion point of each quantization cell is its centroid, and one can express this

distortion penalty in terms of the distortion-normalized minimum distance and the signal length

N , as we show below.

We use R to denote the quantization cell containing x and px(x|R) to denote the conditional

probability density function of x given that x ∈ R. Again, for sufficiently small quantization cells,

this probability density function can often be approximated as uniform over R, for example. Since

s is the centroid of R, ∫
R
(s− x)px(x|R) dx = 0. (60)

Also, the expected squared-error per letter embedding-induced distortion given x ∈ R is

Ds|R =
1
N

∫
R
‖s− x‖2px(x|R) dx. (61)

The most general attack can always be represented as y = s+n, where n may be a function of

s. The resulting distortion is

Dy|R =
1
N

∫
R
‖y − x‖2px(x|R) dx

=
1
N

∫
R
‖(s− x) + n‖2px(x|R) dx

=
1
N

∫
R
‖s− x‖2px(x|R) dx +

1
N
‖n‖2

∫
R

px(x|R) dx +
2
N

nT

∫
R
(s− x)px(x|R) dx

= Ds|R +
‖n‖2
N

,

where we have used (61), the fact that px(x|R) is a probability density function and, thus, integrates

to one, and (60) to obtain the last line. For a successful attack, ‖n‖ ≥ dmin/2 so

Dy|R ≥ Ds|R +
d2

min

4N
.

Averaging both sides of this expression over all quantization cells R yields Dy ≥ Ds + d2
min/4N so

that our figure of merit for quantization index modulation methods is

Dy

Ds
≥ 1 +

d2
min/Ds

4N
= 1 +

d2
norm

4N
. (62)
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Thus, for any QIM method of nonzero distortion-normalized minimum distance dnorm, the attacker’s

distortion penalty is always greater than 1 (0 dB), indicating that to remove the watermark, the

attacker must degrade the host signal quality beyond the initial distortion caused by the embedding

of the watermark.

Binary dither modulation with uniform, scalar quantization In this case, (26) gives d2
norm

in (62). Moreover, due to the uniformity of the quantizers, the bound (62) is met with equality so

that the attacker’s distortion penalty specializes to

Dy

Ds
= 1 + γc

3/4
NRm

. (63)

Because the Hamming distance dH of a block code cannot exceed the number of coded bits

NRm(kc/ku),
γc

NRm
=

dH

NRm(kc/ku)
≤ 1,

where the first equality follows from the definition (23) of γc. Thus, an upper bound for the

distortion penalty (63) in this case is

1 + γc
3/4

NRm
≤ 7

4
≈ 2.43 dB.

Although this penalty may seem modest, it is larger than that obtainable by either additive spread-

spectrum or generalized LBM, as we show below. Larger distortion penalties are not possible

because in-the-clear attackers can concentrate all their distortion in the minimum distance direction

in N -dimensional space.

As a final note, (63) implies that binary dither modulation with uniform, scalar quantization

can defeat any attacker as long as

(
1 + γc

3/4
NRm

)
Ds

Dy
> 1,

an expression whose counterpart for the bounded perturbation channel was (57). Thus, the corre-

sponding achievable rates are given by

supRm =
3γc

4N

(
Dy

Ds
− 1

)−1

.
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Distortion-compensated QIM An in-the-clear attacker of a DC-QIM system knows the quan-

tizers and can determine the watermark m after observing the composite signal s. If the quantization

cells are contiguous so that the distortion-compensation term in (19) does not move s out of the

cell containing x, then an attacker can recover the original host signal with the following attack:

y =
s− αq(s; m, ∆/α)

1− α

=
s− αq(x; m, ∆/α)

1− α

= x,

where the final line follows simply by inverting (19). Thus, the attacker’s distortion penalty Dy/Ds

is −∞ dB. We see that although DC-QIM is optimal against both independent additive Gaussian

noise attacks and squared error distortion-constrained attacks in private-key scenarios, it is in some

sense “maximally suboptimal” against in-the-clear attacks. Regular QIM, on the other hand, is

almost as good as DC-QIM against additive Gaussian noise attacks (Sec. 7) and also resistant

to in-the-clear attacks as discussed above. Thus, regular QIM methods may offer an attractive

compromise when one requires resistance to both intentional attacks and unintentional attacks in

a no-key system.

Additive spread-spectrum Since the embedding function of an additive spread-spectrum sys-

tem is (2), the resulting distortion is Ds = ‖w‖2/N > 0. An attacker with full knowledge of the

embedding and decoding processes can decode the message m, and hence, reproduce the corre-

sponding pseudo-noise vector w. Therefore, the attacker can completely remove the watermark by

subtracting w from s to obtain the original host signal, i.e., y = s−w(m) = x. Hence, the resulting

distortion penalty is Dy/Ds = 0/Ds = −∞ dB.

Because the additive spread-spectrum embedding function combines the host signal x and wa-

termark w(m) in a simple linear way, anyone that can extract the watermark, can easily remove

it. Thus, these methods are not suitable for universally accessible no-key digital watermarking

applications. By contrast, the advantage of QIM is that it effectively hides the host signal even

when the embedded information m is known.

Generalized LBM Recall that the embedding function of a generalized LBM system can be

written as (8) with q(·) having the property (9). Good generalized LBM systems also have the

property that the reconstruction points of q(·) are at the centroids of the quantization cells, as we’ll
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assume. One attack that completely removes information about m is to output these reconstruction

points, i.e., y = q(s) = q(x). Since y is at a minimum distortion point of the quantization cell,

Dy/Ds ≤ 1 = 0 dB, with equality only if both s and y are minimum distortion points. Thus, an

attacker can remove the watermark without causing additional distortion to the host signal. This

result applies regardless of whether error correction coding is used. Thus, in contrast to dither

modulation, error correction coding does not improve LBM in this context.

When, in addition, it is the least significant bit of a uniform, scalar quantizer that is modulated,

the results in App. A imply further that

Ds =
7

48L

∑
k

∆2
k,

while

Dy =
1

12L

∑
k

∆2
k.

Thus, Dy/Ds = 4/7 ≈ −2.43 dB. Again, when many less significant bits are modulated, the results

of the appendix can be used to establish that the penalty grows to -3 dB.

9 Concluding Remarks

We have seen that QIM methods are provably better than additive spread-spectrum and general-

ized LBM against bounded perturbation and in-the-clear attacks and are near-optimal for Gaussian

channels, for which distortion-compensated QIM (DC-QIM) is optimal. Furthermore, dither mod-

ulation is a practical implementation of QIM that exhibits many of the attractive performance

properties of QIM. The convenient structure of dither modulation, which is easily combined with

error correction coding, allows the system designer to achieve different rate-distortion-robustness

trade-offs by tuning parameters such as the quantization step size. Also, one can conveniently up-

grade previously developed additive spread-spectrum and spread LBM systems to spread-transform

dither modulation systems by replacing the respective addition and quantize-and-replace steps with

a dithered quantization step.

In the course of our investigation, a number of rather intriguing results have emerged. For

example, the information-embedding capacity in the Gaussian case does not depend at all on

whether the host signal is available during decoding, and DC-QIM is optimal in both scenarios,

and achieves perfect rejection of host signal interference, even in the high SDR regime.
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Also somewhat surprisingly, the optimal embedding strategy for Gaussian channels and for

typical attacks in private-key systems, DC-QIM, is “maximally suboptimal” against in-the-clear

attacks. On the other hand regular QIM, which has performance within 4.3 dB of DC-QIM in

the Gaussian case, performs better than any other currently known method against in-the-clear

attacks, which arise in copyright notification applications where no-key architectures are used, for

example. In particular, unlike additive spread-spectrum and generalized LBM methods, QIM and

dither modulation methods force an attacker to pay a distortion penalty. Thus, QIM emerges

as a universally good embedding strategy against a wide variety of intentional and unintentional

attacks.

For hybrid transmission strategies, using DC-QIM for digital-over-analog transmission (in for

example digital audio broadcasting applications) allows embedding rates of about 1/3 b/s/Hz for

every dB drop in analog signal quality. In digital-over-digital transmission (in broadcast applica-

tions, for example), DC-QIM is as efficient as any single digital transmission, and thus as good as

the alternative superposition coding and successive cancellation decoding approach.

Many important directions for further research remain. At one end of the spectrum, further

insights into the fundamental principles and structure of information embedding and digital wa-

termarking systems will come from the development of still better general attack models. Those

emerging from game-theoretic formulations and arbitrarily-varying channel models appear to be an

important starting point in this respect.

At the same time, many of the results in this paper have important implications for practical

applications, and the most effective implementations of QIM and DC-QIM embedding systems for

these applications will take into account in detail the specific types of geometric distortions and

other attacks that typically arise. For example, in image watermarking applications, embedders

and decoders ultimately need to be robust to a wide range of often surprisingly challenging attacks,

ranging from scaling and rotation, to cropping and column replacement. A great deal of future

work is needed in this area to enable the use of QIM techniques in watermarking applications, and

indeed these represent some especially interesting design challenges.

A LBM Distortion-normalized Minimum Distance

In this appendix we calculate the distortion-normalized minimum distance of binary low-bit(s) mod-

ulation (LBM) with uniform, scalar quantization. We assume that the host signal and embedded

signal are statistically independent.
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Figure 12: Low-bit modulation with a uniform, scalar quantizer. The quantizer has a step size of
∆k/2, and the least significant bit (lsb) is modulated. All reconstruction points marked with a ×
have a lsb of 0. Points marked with a ◦ have a lsb of 1. This process is equivalent to first quantizing
using a quantizer with a step size of ∆k, whose reconstruction points are marked with a •, and
adding ±∆k/4.

Since the embedding function of any good generalized LBM method can be written as (8) with

(10), the expected distortion is

1
N

E
[‖s− x‖2] =

1
N

E
[‖q(x)− x + d(m)‖2]

=
1
N

E
[‖q(x)− x‖2 + 2(q(x)− x)Td(m) + ‖d(m)‖2]

=
1
N

E
[‖q(x)− x‖2] +

1
N

E
[‖d(m)‖2] , (64)

where we have used (10) and the independence of x and m to obtain the final line.

We analyze coded binary LBM with uniform scalar quantization, an LBM system in which each

in a sequence of coded bits is repeated L times and embedded in a length-L block with a sequence

of uniform, scalar quantizers.

The embedding is accomplished by modulating the least significant bit of each quantizer. The

kth uniform, scalar quantizer is illustrated in Fig. 12. The coarse quantizer qk(·) has a step size of

∆k, and the kth least significant bit adjustment element dk equals ±∆k/4.

Comparing this scheme to coded binary dither modulation with uniform scalar quantization as

described in Sec. 5.1, we see that this scheme has the same minimum distance, i.e., (22). Restricting

attention to the high SDR regime in which x can be modeled as uniformly distributed within each

cell of q(·), as was used to develop (24) in Sec. 5.1, the first term in (64) is

1
L

∑
k

E
[‖q(xk)− xk‖2

]
=

1
12L

∑
k

∆2
k, (65)
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the same as the expected distortion (25) of the corresponding dither modulation system. The

second term in (64), however, is
1
L

∑
k

d2
k =

1
16L

∑
k

∆2
k. (66)

Thus, the overall expected distortion is

Ds =
(

1
12L

+
1

16L

) ∑
k

∆2
k =

7
48L

∑
k

∆2
k,

and the distortion-normalized squared minimum distance is

d2
norm =

12γc

7Rm
.

By comparing with (26), we see that binary coded LBM with uniform scalar quantization is worse

than the corresponding dither modulation system by

3
12/7

=
7
4
≈ 2.43 dB. (67)

Also, note the result (67) is invariant to the actual distribution of the ∆k’s, and invariant to

any preprocessing of the host signal by a unitary transformation. Thus the gap between STDM

and spread LBM is also given by (67).

In other variants of LBM, the gap can be worse. For instance, in the case of M -ary coded

implementations of dither modulation and LBM based on uniform scalar quantization where the

M > 2 sets of reconstruction points together form a regular lattice, then the minimum distances

of the two schemes remain equal (but generally different from the binary case), and the first term

in (64) remains (65). However, as M gets large, dk becomes effectively uniformly distributed over

the range (−∆k/2, ∆k), so the second term in (64) changes from (66) to

1
L

∑
k

E [dk] =
1

12L

∑
k

∆2
k,

the same as (65). Thus the gap (67) grows to a factor of 2 (3 dB) in this large M limit.
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